inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The γ -polymorph of AgZnPO₄ with an ABW zeolite-type framework topology

Abderrazzak Assani, Mohamed Saadi* and Lahcen El Ammari

Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: mohamedsaadi82@gmail.com

Received 9 September 2010; accepted 28 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (Ag–O) = 0.001 Å; *R* factor = 0.019; *wR* factor = 0.044; data-to-parameter ratio = 26.8.

The ν -polymorph of the title compound, silver zinc orthophosphate, was synthesized under hydrothermal conditions. The structure consists of ZnO₄, PO₄ and AgO₄ units. The coordination spheres of Zn^{II} and P^{V} are tetrahedral, whereas the Ag^I atom is considerably distorted from a tetrahedral coordination. Each O atom is linked to each of the three cations. An elliptic eight-membered ring system is formed by corner-sharing of alternating PO₄ and ZnO₄ tetrahedra, leading to a framework with an ABW-type zeolite structure. The framework encloses channels running parallel to [100] in which the Ag cations are located, with Ag $\cdot \cdot \cdot$ Ag contacts of 3.099 (3) Å. This short distance results from $d^{10} \cdots d^{10}$ interactions, which play a substantial role in the crystal packing. The structure of γ -AgZnPO₄ is distinct from the two other polymorphs α -AgZnPO₄ and β -AgZnPO₄, but is isotypic with NaZnPO₄-ABW, NaCoPO₄-ABW and NH₄CoPO₄-ABW.

Related literature

For general background to $A^{I}B^{II}PO_{4}$ phosphates, see: Elouadi & Elammari (1990); Bu *et al.* (1996); Moring & Kostiner (1986). For the α - and β - polymorphs of AgZnPO₄, see: Hammond *et al.* (1998); Elammari *et al.* (1987, 1988). For bond-valence analysis, see: Brown & Altermatt (1985). For $d^{10} \cdots d^{10}$ interactions, see: Jansen (1987). For compounds with isotypic structures, see: Chippindale *et al.* (1999); Feng *et al.* (1997); Ng & Harrison (1998). For nomenclature of zeolites, see: Baerlocher *et al.* (2007).

Experimental

Crystal data

$AgZn(PO_4)$	$\beta = 90.304 \ (2)^{\circ}$
$M_r = 268.21$	V = 394.33 (2) Å ³
Monoclinic, $P2_1/n$	Z = 4
a = 5.1664 (2) Å	Mo $K\alpha$ radiation
b = 10.4183 (3) Å	$\mu = 11.32 \text{ mm}^{-1}$
c = 7.3263 (2) Å	T = 296 K

 $0.25\,\times\,0.08\,\times\,0.05$ mm

Data collection

Bruker X8 APEXII diffractometer9307 measured reflectionsAbsorption correction: multi-scan
(SADABS; Bruker, 2005)1745 independent reflections $T_{min} = 0.351, T_{max} = 0.568$ Rint = 0.033

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.019 & 65 \text{ parameters} \\ wR(F^2) = 0.044 & \Delta\rho_{\max} = 1.18 \text{ e } \text{\AA}^{-3} \\ S = 1.08 & \Delta\rho_{\min} = -1.30 \text{ e } \text{\AA}^{-3} \\ 1745 \text{ reflections} & \end{array}$

Table 1			
Selected	bond	lengths	(Å).

Ag1-O2 ⁱ	2.2992 (13)	Zn1-O3 ⁱⁱ	1.9440 (13)
Ag1-O1	2.3506 (13)	$Zn1-O4^{v}$	1.9516 (13)
Ag1-O4 ⁱⁱ	2.3982 (13)	P1-O3	1.5283 (14)
Ag1-O3 ⁱⁱⁱ	2.4975 (14)	P1-O1	1.5366 (13)
Zn1-O1	1.9372 (13)	P1-O2	1.5401 (13)
Zn1-O2 ^{iv}	1.9439 (13)	P1-O4	1.5415 (13)

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 2, -z + 1; (v) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2407).

References

Baerlocher, Ch., McCusker, L. B. & Olson, D. H. (2007). Atlas of Zeolite Framework Types, 6th ed., revised. Amsterdam: Elsevier.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. & Altermatt, D. (1985). *Acta Cryst.* B**41**, 244–247.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, X., Gier, T. E. & Stucky, G. D. (1996). Acta Cryst. C52, 1601-1603.
- Chippindale, A. M., Cowley, A. R., Chen, J., Gao, Q. & Xu, R. (1999). Acta Cryst. C55, 845–847.
- Elammari, L., Durand, J., Cot, L. & Elouadi, B. (1987). Z. Kristallogr. 180, 137–140.
- Elammari, L., Elouadi, B. & Mueller-Vogt, G. (1988). *Phase Transitions*, 13, 29–32.
- Elouadi, B. & Elammari, L. (1990). Ferroelectrics, 107, 253-258.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497–2504.
 Hammond, R., Barbier, J. & Gallardo, C. (1998). J. Solid State Chem. 141, 177–
- 185.
- Jansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098-1110.
- Moring, J. & Kostiner, E. (1986). J. Solid State Chem. 61, 379-383.
- Ng, H. Y. & Harrison, W. T. A. (1998). *Microporous Mesoporous Mater.* 23, 197–202.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, i74 [doi:10.1107/81600536810038717]

The γ -polymorph of AgZnPO₄ with an ABW zeolite-type framework topology

A. Assani, M. Saadi and L. El Ammari

Comment

A crystal-chemical classification of $A^{I}B^{II}PO_{4}$ compounds was carried out by Elouadi and Elammari (1990) who used the combination of the coordination number and the correlative cationic radii r(A) and r(B) as basic parameters to predict the structural evolution *versus* the nature of both A and B elements. In fact, the appearance of a structural variety does not depend only on the size and the nature of both cations A and B, but could also be favored by specific parameters such as the Jahn-Teller effect, which mainly characterizes compounds containing Cu(II). In addition, the structural stability is also expected to be both temperature- and pressure-dependent. Therefore, the thermodynamic conditions for the preparation of all phases considered are of prime importance. This is also corroborated by the fact that most of the compounds $A^{I}B^{II}PO_{4}$ undergo at least one phase transition (Elammari *et al.*, 1988). For instance, it has been found that the thermal treatment (quenching, sintering, *etc.*) is a key parameter to foresee the structural variety to be stabilized at room temperature (Moring & Kostiner 1986; Bu *et al.*, 1996). In addition to α -AgZnPO₄ and β -AgZnPO₄ characterized by Hammond *et al.*(1998), we report here on the crystal structure of a new form of silver zinc phosphate (γ -AgZnPO₄) that was hydrothermally synthesized.

The structure of this monophosphate consists of zinc and phosphorus atoms tetrahedrally coordinated to oxygen atoms, whereas the silver atom is surrounded by four O atoms in a considerably distorted coordination, with Ag–O bond lengths between 2.2992 (13) and 2.4975 (14) Å. As shown in Fig. 1, the PO₄ and ZnO₄ tetrahedra share a vertex and are almost regular with P–O and Zn–O distances in the range 1.5283 (14)–1.5415 (13) Å and 1.9372 (13)–1.9516 (13) Å, respectively (Table 1). The expected +I, +II and +V oxidation states of the Ag, Zn and P atoms were confirmed by bond valence sum calculations (Brown & Altermatt, 1985) with 0.94, 2.09 and 4.93 valence units, respectively.

A three-dimensional polyhedral view of the crystal structure is represented in Fig. 2. It shows PO₄ tetrahedra linked to ZnO₄ tetrahedra by sharing corners in the way to build an eight-membered ring system surrounding the silver atoms. This arrangements give rise to eight-membered elliptical channels running parallel to [100] where the Ag^I atoms are located with short Ag^{...}Ag contacts of 3.099 (3) Å. This short distance is due to $d^{10}...d^{10}$ interactions (Jansen, 1987) that play an important role in the crystal structure.

It is particularly interesting to compare the crystal structures of the three different polymorphs of AgZnPO₄: The hightemperature β -AgZnPO₄ polymorph adopts a monoclinic beryllonite-type structure similar to that of NaZnPO₄ (Elammari *et al.*, 1987) whereas the low-temperature α -AgZnPO₄ polymorph crystallizes with a hexagonal structure like that of high*p*/low-*T* KZnPO₄. In both α - and β - polymorphs, corner-sharing PO₄ and ZnO₄ tetrahedra form a fully ordered framework containing six-membered rings with distinct topologies around the Ag^I atoms (Hammond *et al.*, 1998). As noted above, in the case of γ -AgZnPO₄ they build up an elliptical eight-membered ring system of alternating PO₄ and ZnO₄ tetrahedra around the Ag^I atoms with an ABW zeolite topology UUUUDDDD, where U and D represent tetrahedra pointing up and down, respectively (Baerlocher *et al.*, 2007).

supplementary materials

Compounds isotypic with γ-AgZnPO₄ are relatively rare, however, there are three phases which adopt the same stucture, *viz.* NaZnPO₄-ABW (Ng & Harrison, 1998), NaCoPO₄-ABW (Chippindale *et al.*, 1999) and NH₄CoPO₄-ABW (Feng *et al.*, 1997).

Experimental

The hydrothermal exploration of the $Ag_2O-ZnO-P_2O_5$ system, in order to search for new phases, in particular with alluaudite-like structure, has allowed to isolate a new form of silver zinc orthophosphate. The reaction mixture contained silver nitrate (AgNO₃; 0.1699 g), zinc oxide (ZnO; 0.1221 g), 85 %_{wt} phosphoric acid (H₃PO₄; 0,10 ml) and water (12 ml) and was hydrothermally treated in a 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K for two days. After being filtered off, washed with deionized water and air dried, the reaction product consists of a white powder and some colorless parallelepipedic crystals corresponding to the title compound.

Refinement

The highest peak and the deepest hole in the final Fourier map are 0.53 Å and 0.52 Å, respectively, from Ag1.

Figures

Fig. 1. Plot of parts of the crystal structure of the title compound showing the most important interatomic bonds. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iii) x - 1/2, -y + 3/2, z - 1/2; (iv) -x, -y + 2, -z; (v) -x + 1, -y + 2, -z + 1; (vi) x - 1/2, -y + 3/2, z + 1/2.]

Fig. 2. A three-dimensional polyhedral view of the crystal structure of the monophosphate γ -AgZnPO₄. PO₄ tetrahedra are pink, ZnO₄ tetrahedra are light-blue and silver atoms are grey.

silver zinc orthophosphate

Crystal data AgZn(PO₄) $M_r = 268.21$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.1664 (2) Å b = 10.4183 (3) Å c = 7.3263 (2) Å

F(000) = 496 $D_x = 4.518 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1745 reflections $\theta = 3.4-35.0^{\circ}$ $\mu = 11.32 \text{ mm}^{-1}$ T = 296 K $\beta = 90.304 (2)^{\circ}$ $V = 394.33 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker X8 APEXII diffractometer	1745 independent reflections
Radiation source: fine-focus sealed tube	1621 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.033$
ϕ and ω scans	$\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -7 \rightarrow 8$
$T_{\min} = 0.351, T_{\max} = 0.568$	$k = -16 \rightarrow 16$
9307 measured reflections	$l = -11 \rightarrow 11$

Plate, colourless

 $0.25\times0.08\times0.05~mm$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_0^2) + (0.0138P)^2 + 0.5475P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.044$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.08	$\Delta \rho_{max} = 1.18 \text{ e} \text{ Å}^{-3}$
1745 reflections	$\Delta \rho_{\rm min} = -1.30 \text{ e } \text{\AA}^{-3}$
65 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 restraints	Extinction coefficient: 0.0685 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.20254 (3)	0.891281 (15)	0.021499 (19)	0.01931 (6)
Zn1	0.19054 (4)	0.840764 (19)	0.52546 (3)	0.01037 (6)
P1	0.69041 (8)	0.89550 (4)	0.29147 (6)	0.00877 (8)

supplementary materials

01	0.3966 (2)	0.87815 ((14)	0.3118	32 (18)	0.0159 (2)		
O2	0.7616 (3)	1.03856 (1.03856 (12)		34 (18)	0.0161 (2)		
O3	0.8268 (3)	0.83575 ((14)	0.4564	41 (19)	0.0166 (2)		
O4	0.7730 (3)	0.83197 ((12)	0.1108	³⁹ (18) (0.0155 (2)		
Atomic displ	acement parameter:	$s(A^2)$						
	U^{11}	U^{22}	U^{33}		U^{12}	U^{13}	U^{23}	
Ag1	0.02148 (8)	0.02283 (8)	0.013	63 (8)	0.00195 (5)	0.00071 (5)	0.00377 (5)	
Zn1	0.01202 (9)	0.00970 (9)	0.009	39 (9)	-0.00034 (6)	-0.00004 (6)	0.00058 (6)	
P1	0.00988 (16)	0.00839 (16)	0.008	05 (16)	-0.00085 (12) 0.00051 (12)	0.00001 (12)	
01	0.0099 (5)	0.0272 (7)	0.010	7 (5)	-0.0013 (5)	0.0007 (4)	0.0032 (5)	
O2	0.0289 (7)	0.0083 (5)	0.011	0 (5)	-0.0043 (5)	0.0007 (5)	-0.0006 (4)	
O3	0.0139 (5)	0.0184 (6)	0.017	6 (6)	-0.0014 (4)	-0.0044 (4)	0.0069 (5)	
O4	0.0189 (6)	0.0130 (5)	0.014	7 (6)	-0.0045 (4)	0.0059 (5)	-0.0055 (4)	
Geometric p	arameters (Å, °)							
Ag1—O2 ⁱ		2.2992 (13)		P1—0)1	1.5	366 (13)	
Ag1—01		2.3506 (13)		P1—0	02	1.5	1.5401 (13)	
Ag1—O4 ⁱⁱ		2.3982 (13)	2.3982 (13) P1—O4		04	1.5	1.5415 (13)	
Ag1—O3 ⁱⁱⁱ		2.4975 (14) O2-		02—2	$O2$ — $Zn1^{v}$		1.9438 (13)	
Ag1—Ag1 ^{iv}		3.0990 (3) O2		O2—4	Agl ⁱ	2.2	2.2992 (13)	
Zn1—O1		1.9372 (13)	1.9372 (13) O3—Zn1 ^{vi}		Zn1 ^{vii}	1.9440 (13)		
Zn1—O2 ^v		1.9439 (13)	1.9439 (13) O3-		O3—Ag1 ^{viii}		2.4975 (14)	
Zn1—O3 ⁱⁱ		1.9440 (13)	1.9440 (13) O4		O4—Zn1 ^{ix}		1.9516 (13)	
Zn1—O4 ^{vi}		1.9516 (13)	1.9516 (13)		Ag1 ^{vii}	2.3	982 (13)	
P1—O3		1.5283 (14)						
O2 ⁱ —Ag1—O	D1	146.80 (5)		03—I	2102	110	0.33 (8)	
O2 ⁱ —Ag1—G	O4 ⁱⁱ	114.78 (5)		01—I	2102	110).97 (8)	
01—Ag1—0	04 ⁱⁱ	97.40 (5)	97.40 (5) O3—P1-		P1—04	-O4 112.03 (8)		
O2 ⁱ —Ag1—0	O3 ⁱⁱⁱ	95.66 (5)	95.66 (5) 01		P1—04	108	108.10 (8)	
01—Ag1—0	03 ⁱⁱⁱ	90.50 (5)		02—I	P1—04	100	106.28 (7)	
O4 ⁱⁱ —Ag1—	O3 ⁱⁱⁱ	92.72 (5)		P10	01—Zn1	130	130.50 (8)	
O2 ⁱ —Ag1—A	Ag1 ^{iv}	74.30 (4)	74.30 (4)		P1—O1—Ag1		108.80 (7)	
O1—Ag1—A	ag1 ^{iv}	114.78 (4)		Zn1—	O1—Ag1	120	120.61 (6)	
O4 ⁱⁱ —Ag1—	Ag1 ^{iv}	65.84 (3)		P1—0	D2—Zn1 ^v	120	126.57 (8)	
O3 ⁱⁱⁱ —Ag1—	-Ag1 ^{iv}	147.90 (3)		P1—0	02—Ag1 ⁱ	113	3.75 (7)	
01—Zn1—0	2^{v}	114.19 (6)		Zn1 ^v -	-O2-Ag1 ⁱ	119	9.64 (6)	
O1—Zn1—O	03 ⁱⁱ	109.25 (6)		P1—0	03—Zn1 ^{vii}	129	9.49 (8)	
$O2^{v}$ —Zn1—O	O3 ⁱⁱ	109.40 (7)		P10	03—Ag1 ^{viii}	114	4.76 (7)	
01—Zn1—0	94 ^{vi}	108.94 (6)		Zn1 ^{vii}	—O3—Ag1 ^{viii}	103	3.00 (6)	
$O2^{v}$ —Zn1—O	O4 ^{vi}	109.17 (6)		P10	04—Zn1 ^{ix}	127	7.61 (8)	
O3 ⁱⁱ —Zn1—0	O4 ^{vi}	105.52 (6)		P1—0	04—Ag1 ^{vii}	112	2.61 (7)	

O3—P1—O1 109.09 (8) $Zn1^{1x}$ —O4—Ag1 ^{vii} 1	10.53 (6)
---	-----------

Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) x-1/2, -y+3/2, z-1/2; (iv) -x, -y+2, -z; (v) -x+1, -y+2, -z+1; (vi) x-1/2, -y+3/2, z+1/2; (vii) x+1, y, z; (viii) x+1/2, -y+3/2, z+1/2; (ix) x+1/2, -y+3/2, z-1/2.

